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ABSTRACT 

 In this article, thin solid films are processed via pulsed-pressure metal organic 

chemical vapour deposition (PP-MOCVD) on FTO substrates over a range of processing 

times to produce a range of thicknesses and microstructures. The films are highly 

nanostructured anatase-rutile TiO2 composite films with unique single crystal dendrites. After 

annealing, carbon was removed, and materials showed improved water splitting activity; with 

IPCEs above 80 % in the UV, photocurrents of ~1.2 mA.cm-2 at 1.23 VRHE at 1 sun irradiance 

and an extension of photoactivity into the visible range. The annealed material exhibits 

minimal recombination losses and IPCEs amongst the highest reported in the literature; 

attributed to the formation of a high surface area nanostructured material and synergetic 

interactions between the anatase and rutile phases.  
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INTRODUCTION 

The extraction and combustion of more than 500 Gigatons of fossil carbon over the past 70 

years has resulted in a build-up of CO2 in the atmosphere that is causing global warming, and 

has driven research in alternative energy technologies that can ameliorate the effects of global 

warming [1, 2]. Solar photovoltaic cells directly produce electricity from renewable, but 

intermittent solar radiation. The intermittency of increased solar and wind generation is 

driving a search for energy storage solutions [3]. Fujishima and Honda, first demonstrated 

water splitting on a TiO2 photoelectrode using UV light [4]. Research on the 

photoelectrochemical water splitting has been focused on improving device efficiency, 

enhancing the utilization of visible spectrum radiation, and achieving commercial viability[5, 

6]. 

 Photoelectrochemical water splitting is the process of decomposing water into oxygen 

and hydrogen on a semiconductor photocatalyst by light and an applied voltage [7]. The ultra-

bandgap absorption of light results in the generation of electron hole pairs in the 

photocatalyst. The applied voltage assists the spatial separation of electron hole pairs, and 

these charge carriers participate in redox reactions at the semiconductor/electrolyte interface. 

 



                                                4𝐻+ + 4𝑒− → 2𝐻2,    𝐸o = 0 𝑉                                    (Eq 1a) 

                                       2𝐻2𝑂 + 4ℎ+ → 𝑂2 + 4𝐻+,     𝐸o = 1.23 𝑉                          (Eq 1b) 

  

 The conduction band should be sufficiently reducing for water reduction and hydrogen 

production to occur (Eq. 1a). The valence band should be sufficiently oxidising for water 

oxidation and the formation of oxygen to occur (Eq 1b) [8, 9]. The bandgap of the material 

should be wide enough to surpass the thermodynamic potential for water splitting (1.23 V) 

and additional kinetic barriers [10, 11]. 

 Several research groups have focussed on improving the visible light activity and 

efficiency of water splitting materials [9, 12]. One of the most common strategies for 

improving the efficiency is to introduce nanostructure, which decouples the problem of long 

light absorption depths and poor minority carrier diffusion lengths [13]. Hole carrier diffusion 

lengths in TiO2 are on the order of 10’s of nanometres [14], and for these carriers to reach the 

semiconductor/electrolyte interface and oxidise water, they need to be formed near the 

material surface. By introducing nanostructures, such as pillars and rods, more holes are 

formed near the surface of the material, and higher water splitting efficiencies have been 

demonstrated [15, 16]. The studies to date have mainly used hydrothermal processing 

methods to synthesise TiO2-based photoelectrodes [15, 17, 18]. The clear gap in the research 

and development of efficient and viable photoanodes for solar hydrogen production is in the 

area of upscalable processing methods to robust and stable photoelectrode materials.  

 In this paper we use the pulsed-pressure metal organic chemical vapour deposition 

(PP-MOCVD) method to produce nanostructured TiO2 photoelectrodes from single-liquid 

source precursor solution of titanium tetra isopropoxide (TTIP) in toluene. Atmospheric 



pressure CVD is used to produce TiO2 thin films during the float glass manufacture process, 

which has resulted in the commercialisation of numerous “self-cleaning” products including 

Activ™, Bioclean™, Sunclean™ and Variclean™ [19, 20]. Control of precursor arrival rate 

and substrate temperature provides the control of microstructure [21]. In this study, we show 

that by controlling the deposition time by adjusting the number of pulses, we can produce a 

range of film thickness, fraction of anatase and rutile phases, and film topography.  

 In this article, we also study the role of co-deposited carbon, and its impact on the 

water splitting activity of our TiO2 photoelectrodes. We find that highly nanostructured TiO2 

architectures, produced by pulsed-pressure metal organic chemical vapour deposition (PP-

MOCVD), that contain both anatase and rutile phases, can achieve high water splitting 

efficiencies with minimal recombination losses (incident photon-to-current efficiencies up to 

80 % in the UV). We believe that this upscalable synthetic route, and strategy for introducing 

nanostructure, can be applied to other materials systems that can harness more of the solar 

spectrum, and thus show potential enhancements in solar water splitting activity. 

 

EXPERIMENTAL 

Synthesis of TiO2 photoanodes 

TiO2 films were grown using a pulsed pressure metal organic chemical vapour deposition 

(PP-MOCVD) process in a cold wall reactor, described previously by Lee et al [22]. The 

deposition temperature was measured by k-type thermocouple inserted into the susceptor and 

heated by an induction coil. Depositions were carried out on F: SnO2 TEC Glass™ (13 Ω/□; 

13 mm × 6 mm × 18 mm). The temperature was maintained at 525 °C for the entirety of the 



deposition. A metered volume of precursor liquid solution (5 mol% solution of titanium tetra-

isopropoxide (toluene, 500 μl per pulse) is directly injected through an ultrasonic atomizing 

nozzle into the continuously evacuated reactor volume at timed intervals, resulting in a sharp 

pressure pulse followed by pump-down. In the current reactor geometry, the susceptor is 

placed directly above an induction coil and the injector is located at the top of the reactor. The 

number of pulses was varied in each deposition resulting in films of varied thickness, 

anatase/rutile phase fractions and nanostructure (19, 92, 138, 184 and 460 pulses were 

investigated herein). The injection pulses were spaced 6 s apart. The chamber base pressure 

was held at 120 Pa, with the mean peak pressure in the region of 500 Pa. The effect of post-

annealing was investigated, with samples annealed in air at 500 °C for 3 h. 

 

Physical characterisation 

X-ray diffraction (XRD) was carried out on the Bruker GADDS D8 diffractometer with a Cu 

Kα X-ray source over the range 10° < 2θ < 66°. X-ray diffraction was carried out with a 

glancing incident angle of 1.0° unless otherwise stated. X-ray photoelectron spectroscopy 

(XPS) was carried out on a Thermo Scientific K-Alpha with a monochromatic Al-Kα source. 

Survey scans were collected over the 0−1400 eV binding energy range with 1 eV resolution 

and a pass energy of 200 eV. Higher resolution scans (0.1 eV) encompassing the principal 

peaks of C (1s), O (1s), F (1s), Si (2p), and Ti (2p) were collected at a pass energy of 50 eV; 

with subsurface layers investigated by Ar-ion sputtering. Chemical environments were 

deconvolution using CasaXPS software [23], with the binding energies calibrated to graphitic 

carbon (1s = 285 eV) [24]. UV-visible absorption spectra were measured using a Shimadzu 

UV-vis 2600 spectrophotometer equipped with an integrating sphere over the wavelength 



range 190 – 1400 nm. Film thickness and surface topographies were measured using scanning 

electron microscopy (SEM) on a JEOL 7000F Field Emission SEM at accelerating voltage of 

15 keV. Film morphology was further studied using a Philips CM 200 transmission electron 

microscope (TEM), after a portion of the film was removed from the substrate using a 

diamond blade and applied onto a Cu grid and coated with carbon. Surface roughness was 

measured using a Digital Instruments Dimension 3100 atomic force microscope (AFM) 

operating in tapping mode with a scan frequency of 2 Hz over a 5 μm × 5 μm area. Results 

were processed using Gwyddion software [25]. 

 

Photoelectrochemical water splitting 

All analyses were carried out in a home-made PEEK cell with quartz windows. The 

electrolyte was 1 M NaOH (Sigma Aldrich, 98 %; pH = 13.6) in Milli-Q-water (Millipore 

Corp., 18.2 MΩ.cm at 25 °C). A three-electrode configuration was used, with a Pt mesh 

counter electrode, a Ag/AgCl/saturated-KCl reference electrode (0.197 VNHE at 25 °C; 

Metrohm) and the TiO2 photoanode placed at the working electrode. An Autolab potentiostat 

(PGSTAT12 with an FRA2 module) was used to apply voltage and measure the current 

extracted from the sample. The applied voltages are reported vs the reversible hydrogen 

electrode (VRHE), converted using the Nernst equation: 

 

𝑉𝑅𝐻𝐸 = 𝑉𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.0591 × 𝑝𝐻 +  𝑉𝐴𝑔/𝐴𝑔𝐶𝑙
𝑜  

(2) 

 Current-voltage curves were measured from 0.0 to 2.0 VRHE at a scan rate of 40 mV.s-

1. A 365 nm LED light was used as the excitation source (LZ1-10U600, LedEngin. Inc.). The 



light intensity (~44 mW.cm-2) was measured using an optical power meter (PM 100, 

Thorlabs) with a power sensor (S120UV, Thorlabs). The incident photon to current efficiency 

(IPCE) was measured at a fixed potential of 1.23 VRHE (the thermodynamic potential for water 

oxidation) using an ozone-free xenon lamp (75 W, Hamamatsu) coupled to a monochromator 

(OBB-2001, Photon Technology International) over the wavelength range 250 – 425 nm. The 

IPCE was calculated using the following equation: 

 

𝐼𝑃𝐶𝐸 (%) =  
𝐼𝑝ℎ × 1239.8

𝑃𝑚𝑜𝑛𝑜 × 𝜆
× 100 

(3) 

where 𝐼𝑝ℎ (mA.cm-2) is the photocurrent, 1239.8 (eV.nm) is a product of Planck's constant 

with the speed of light, 𝑃𝑚𝑜𝑛𝑜 (mW.cm-2) is the power and 𝜆 (nm) is the wavelength of the 

monochromated light. Sample stability was also measured at a fixed potential of 1.23 VRHE 

under chopped 365 nm LED light for 1 hr.  

 The solar water splitting activity was simulated from IPCE measurements. This 

theoretical solar photocurrent (TSP) was determined by multiplying the IPCE with the AM1.5 

solar spectrum, and then converting this into a current: 

𝑇𝑆𝑃 (𝑚𝐴. 𝑐𝑚−2) = ∫ 𝐼𝑃𝐶𝐸 × 𝐴𝑀1.5 (𝑝ℎ𝑜𝑡𝑜𝑛. 𝑐𝑚−2)

280 𝑛𝑚

3000 𝑛𝑚

 × 1000/ 1𝐶 

(4) 

where 1𝐶 is 6.241 x 1018 electrons per second. 

 

 



RESULTS AND DISCUSSION 

Physical characterisation 

TiO2 thin films were grown on FTO glass substrates using a PP-MOCVD process. With the 

exception of the thinnest film (19 deposition pulses), as-deposited films were brown/black in 

appearance (92 – 460 pulses). XPS showed that these thicker TiO2 films contained high levels 

of carbon (typically between 3– 7 at.% as calculated from XPS depth profile). Ar-ion 

sputtering was used to etch away surface layers, and the carbon 1s environment was 

investigated from the surface into the material bulk (Figure 1a). Adventitious carbon was 

observed at the material surface [26]. Ar-ion sputtering removed this adventitious carbon, and 

revealed a new environment (~281.5 eV) associated with ion induced Ti-C bonding [27]. This 

type of bonding was observed by Galuska et al. on titanium films grown on carbon. Ar-ion 

sputtering also revealed a carbon environment at ~284.2 eV, that has been attributed to the 

presence of highly ordered carbon layers [28]. Surface XPS analysis of the Ti 2p environment 

revealed a binding energy for the Ti 2p3/2 environment of ~458.7 eV (Figure S1a), which 

corresponds to Ti4+ in TiO2 [29]. No indication of Ti3+ formation was observed. 

XPS annealing studies here 

 XRD of the as-deposited samples showed that the thinnest film (19 pulses) was 

composed of anatase, and that thicker samples contained both anatase and rutile phases of 

TiO2 (Figure S1b). No diffraction peaks were observed in the XRD pattern of the as-

deposited thickest sample (420 pulses); however, after annealing in air, and the subsequent 

removal of carbon, both anatase and rutile peaks were observed (Figure 1b). The anatase: 

rutile phase fraction was estimated using a refined scale factor, which was determined from 

the sum total peak counts of each phase (Equation S1). Rutile content was low, and ranged 
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between 0 – 9 % across all samples (Table S1). Interestingly, thicker samples showed higher 

levels of rutile, where the rutile content increased from 2% in the post-annealed 92 pulse 

sample to 9% in the post-annealed 460 pulse sample. The XRD of the 184 pulse sample was 

also measured at various glancing incidence angles (Figure S3). The peak height ratio of 

anatase (101) to rutile (110), at various glancing incidence angles (0.2 to 1.4°), did not vary 

substantially. Shallow incidence angles primarily probe the surface of the material and steeper 

incidence angles probe further into the material bulk. Our results showed that the anatase/ 

rutile phase fraction did not change with material depth. 

 

  

Figure 1: (a) XPS of the carbon 1s binding energy environment in the as-deposited TiO2 

sample made from 184 pulses (inset shows depth profile) and (b) XRD spectra of the air-

annealed TiO2 samples (19 – 460 pulses), alongside anatase, rutile and FTO powder 

standards. Miller indices correspond to anatase (non-asterisked) and rutile (asterisked) phases. 

  

 UV-visible absorption spectroscopy of the post-annealed 19 pulse sample revealed a 

band edge at ~380 nm (Figure 2). There was no significant difference in the UV-visible 

absorption spectrum of the 19 pulse sample before and after annealing, which we attribute to 

the lack of carbon incorporated into these films. A Tauc plot showed that the bandgap of the 



19 pulse sample was ~3.1 eV (Figure S4), similar to literature values for anatase TiO2 (~3.2 

eV) [30, 31]. UV-visible absorption spectroscopy of the as-deposited 92 pulse sample 

revealed a red-shifted band edge at ~410 nm, alongside strong absorption into the visible 

(Figure 2). The strong absorption in the visible was due to a high concentration of carbon 

presence in this material. This was typical of thicker samples made from a higher number of 

deposition pulses, which all appeared brown/ black in colour. However, after annealing in air, 

the 92 pulse sample maintained its red-shifted band edge and showed a decrease in absorption 

in the visible. This decrease in visible light absorption was attributed to the removal of carbon 

by annealing, resulting in a colour change to hazy white (Figure 2, inset). After annealing, the 

92 pulse sample possessed a higher degree of visible light “absorption” compared with the 

thinner 19 pulse sample. Primarily, this was not due to light absorption, but rather, an increase 

in the diffuse scattering of light (which gave rise to a false positive of visible light 

absorption). This was caused by an increase in surface roughness in thicker films, and the 

resulting formation of surface nanostructures, as evidenced by SEM (Figure 3). 

 

 



Figure 2: UV-visible absorption spectroscopy of the 19 pulse sample after annealing (AA), 

and the 92 pulse sample before annealing (BA) and after annealing (inset shows a photograph 

of the 92 pulse sample before and after annealing). 

  

 SEM was used to investigate the topography and thickness of the samples (Figure 3). 

Film thickness increased from ~100 nm in the 19 pulse sample to ~11 µm in the 460 pulse 

sample. This increase in film thickness was not linear with the number of deposition pulses; 

with the growth rate increasing exponentially with the number of pulses (~5, ~6, ~14 and ~23 

nm per pulse for the 19, 92, 184 and 460 pulse samples respectively). The 19 pulse sample 

consisted of randomly organised crystallites. The 92 pulse sample consisted of nanostructured 

protruding rounded structures. The thicker films (184 and 460 pulses) consist of 

nanostructured dendrites with larger diameters in thicker films. The surfaces of the dendrites 

present at a jagged array of highly ordered sheets. No substantial change in microstructure or 

film thickness was observed after annealing the samples in air (Figure S5). 

 



 

Figure 3: Side-on cross-sectional SEM images of TiO2 samples, after annealing in air, made 

from (a) 19, (b) 92, (c) 184 and (d) 460 pulses (inserts in the centre show top-down images of 

surface topography). Arrows indicate mean film thickness given. 

 

 AFM was also used to investigate the surface topography of all samples (Figure S6). 

Both surface area and surface roughness increased with film thickness (Table 1). The surface 

area, per geometric 25 µm2, increased from 36.0 µm2 in the 19 pulse sample to 56.3 µm2 in 

the 460 pulse sample and the root mean square (RMS) roughness increased from 42.3 nm in 

the 19 pulse sample to 257 nm in the 460 pulse sample. No significant change in surface area 

or surface roughness was observed after annealing in air (Figure S7). 

 



TiO2 microstructure 

Fragments scraped from the 184 pulse sample contained crystallite fragments that could be 

imaged by TEM, which showed that these fragments were primarily composed of anatase 

dendrites (Figure 4). The approximate length and width of each dendrite arm was 70 nm and 

10-20 nm, respectively. High resolution imaging reveals lattice fringes and the spacing 

corresponds to (101) anatase planes. These (101) anatase planes were perpendicular to the 

dendrite fragment lying flat on the TEM grid, but the plane of the fragment could not be 

identified here. Fringes corresponding to rutile crystals, observed by XRD, were not observed 

by TEM analysis. No carbon structures were found in the TEM analysis suggesting that 

carbon forms thin layers at crystallite interfaces only, which can also account for lack of 

structural changes in the film before and after annealing as seen in Figure S5 and Figure S7. 

 Dendritic films of anatase TiO2 have been grown using a number of synthesis routes 

and various explanations have been given for their formation, focusing mostly on deposition 

conditions [32-35]. Takahashi et. al. reported both anatase and mixed phase anatase/rutile 

TiO2 films deposited at 500 ˚C using TTIP [34]. Only anatase growth was observed at low 

carrier gas flows (N2, 0.2 cm3s-1), whereas rutile content increased exponentially with an 

increase in flow rate. Similar nanostructures were observed by Takahashi et. al., to the 

dendrites observed herein, however no TEM analysis was presented and nanoscale features 

were not described [34]. Biswas et. al. showed that nanoscale anatase columns with (112) 

texture and widths of approximately 20 – 30 nm could be grown by aerosol-assisted CVD at 

500 ˚C [18, 36, 37]. Goossens et al. [33] reported nanostructured dendritic anatase films, with 

a similar morphology to Takahashi et. al.’s [34], deposited using APCVD from mixtures of 

TTIP and TiCl4 in the temperature range of 300 – 350 ˚C.  The water splitting activity of 



dendritic titania, grown using the aforementioned CVD processes, have not previously been 

examined. 

 

 

Figure 4: TEM micrographs of the as-deposited TiO2 sample grown from 184 pulses. 

Measurement of the d-spacing (top right) showed that these crystals were anatase TiO2 single 

crystals. 

 

Photoelectrochemical water splitting 

The photoelectrochemical water splitting activity of our TiO2 photoelectrodes was examined, 

both before and after being annealed in air. Current voltage curves were measured in 1 M 

NaOH (pH = 13.6), sweeping the voltage from 0.0 to 2.0 VRHE. A 365 nm LED (~44 mW.cm-

2) was turned on and off, roughly every second. The current-voltage curves, measured under 

front irradiation, are shown in Figure 5 for a series of samples made from a range of 

deposition pulses. We will first discuss the performance of as-deposited samples, before they 

were annealed in air. The 19 pulse sample, which possessed the least nanostructure and 

consisted solely of the anatase phase, showed the earliest photocurrent onset (~0.1 VRHE) and 



plateau (~0.8 VRHE), and showed a photocurrent of ~1.4 mA.cm-2 at 1.23 VRHE. The 92 pulse 

sample, which possessed dendritic nanostructure and was composed of a mixture of anatase 

and rutile phases, showed a similarly early photocurrent onset but plateaued later (~1.3 VRHE). 

The 92 pulse sample showed a photocurrent of ~2.4 mA.cm-2 at 1.23 VRHE. A decrease in 

photoelectrochemical performance was observed in thicker materials, the 184 and 460 pulse 

samples showing photocurrents of ~1.4 mA.cm-2 and ~0.1 mA.cm-2 at 1.23 VRHE respectively. 

We will now discuss the performance of samples after being annealed in air. The 19 pulse 

sample showed no significant change to its performance before being annealed. However, the 

92 pulse sample showed substantial improvements in performance, where the photocurrent 

onset shifted cathodically to ~0.1 VRHE, the photocurrent plateaued earlier (~1.0 VRHE) and the 

photocurrent increased substantially; reaching ~4.6 mA.cm-2 at 1.23 VRHE. Similar 

enhancements in photoelectrochemical water splitting activity were observed in the 184 and 

460 pulse samples; reaching ~3.5 mA.cm-2 and ~3.9 mA.cm-2 at 1.23 VRHE respectively. 

Turning our attention to the photoelectrochemical performance when irradiated from the back 

(Figure S8), we find similar trends to what was observed under front irradiation, both before 

and after being annealed in air, with the exception that the thickest sample (460 pulses) 

showed the highest activity.  

 



  

Figure 5: Current-voltage curves for a series of TiO2 samples measured under front 

irradiation (a) before and (b) after being annealed in air. Samples were measured in 1 M 

NaOH (pH = 13.6), the current was swept from 0.0 to 2.0 VRHE at a scan rate of 40 mV.s-1 and 

a 365 nm LED (~44 mW.cm-2) was turned on and off roughly every second. Dotted grey lines 

represent the zero-line of current flow for each sample (i.e. 0 mA.cm-2). 

 

 IPCEs were measured under front irradiation at a constant applied potential of 1.23 

VRHE, both before and after being annealed in air (Figure 6). Before annealing, there was a 

clear trend in activity, where the thinnest sample (19 pulses) showed higher light conversion 

efficiencies, and increases in film thickness resulted in lower efficiencies. Intriguingly, all 

samples showed a sharp cut-off in activity above 375 nm, despite thicker samples containing a 

significant rutile component (Ebg ~3.0 eV, ~ 410 nm) and a more red-shifted band edge 

(Figure 2). This indicated that only the anatase component was active in splitting water for 

non-annealed films (Ebg ~3.2 eV, ~ 388 nm). Post-annealing, the 92 pulse sample showed a 

dramatic increase in activity, matching the light conversion efficiencies of the 19 pulse 

sample in the UV-region (250 – 300 nm), and also showing extended activity into the visible. 

Post-annealing, thicker samples, which contained a rutile component, showed higher visible 

light activities than the thinnest sample (19 pulses), which solely contained anatase. When 

irradiating the samples from the back (i.e. through the FTO layer), a loss in UV activity from 



250 – 325 nm was observed (Figure S9). This was attributed to UV absorption by the FTO 

layer, which blocked UV light from reaching the TiO2 layer. Similar trends in light 

conversion behaviour were observed, pre and post-annealing, to those found under front 

irradiation; with the exception that the thickest sample (460 pulses) showed the highest levels 

of activity. Of note, the TiO2 photoelectrodes grown herein were durable, and showed no 

change in photocurrent over a period of testing for one hour (Figure S10). 

 

  

Figure 6: IPCE measured at a constant applied potential of 1.23 VRHE in 1 M NaOH (pH = 

13.6) for a series of TiO2 samples under front irradiation (a) before and (b) after annealing. 

 

 Looking at general trends in photoelectrochemical activity, thinner samples were more 

active than thicker samples before being annealed. However, after annealing, thicker samples 

showed substantial increases in activity; both under 365 nm irradiation (Figure 5) and into the 

visible (Figure 6). This was attributed to two complimentary physical properties: (i) an 

increased nanostructure and (ii) the activation of the rutile component. We will discuss each 

point in turn.  



 An increase in nanostructure is often beneficial for photoelectrochemical water 

splitting systems, and is attributed to the enhancement of light absorption near the 

semiconductor/ electrolyte interface (as opposed to the bulk). This is of particular importance 

in TiO2, where the hole diffusion length is on the order of 10’s of nanometres [14]. On the 

other hand, given the long diffusion length of electrons in TiO2, on the order of several 

micrometers [38], electron extraction into the FTO layer is possible so long as film thickness 

does not surpass this diffusion limit. Of note, this electron diffusion limit was likely surpassed 

by our thickest sample (460 pulses, ~11 µm), and as a consequence, showed higher light 

conversion efficiencies under back irradiation (Figure S9) than front irradiation (Figure 6). 

Thicker, and more nanostructured photoelectrodes, often show higher levels of activity than 

thinner, and more flat-structured photoelectrodes, as they better utilise light that is absorbed 

deeper into the material (i.e. wavelengths at the band edge, that are not absorbed as strongly 

as wavelengths lower than the band edge). In addition to this, nanostructured materials scatter 

light more effectively than flatter structures, and have been used to good effect in enhancing 

the performance of photovoltaic devices [39, 40].  

 Rutile was found more prominently in thicker samples (92 – 460 pulse depositions), 

and upon annealing, the water splitting activity was extended into the near-visible (Figure 6). 

This was due to the “activation” of the rutile component upon annealing. It was not that 

annealing resulted in an increase in rutile formation in our materials (as evidenced by our 

XRD studies, see Table S1), but rather, it was the removal of carbon through annealing that 

resulted in the activation of rutile already present in our materials (Figure S2). This was 

because carbon was an inhibitor, which prevented electron extraction from our materials, and 

inhibited the performance of rutile more so than anatase. In the 92 pulse sample, annealing 



resulted in a synergic interaction between the anatase and rutile phases, matching the UV light 

conversion efficiencies of the 19 pulse sample (i.e. pure anatase) and showing extended 

activity into the visible. Synergic interactions in anatase: rutile composites are frequently 

observed, where in fact, P25 Degussa TiO2, a commercially available powder composite 

composed of both anatase and rutile phases, is often considered the benchmark photocatalyst 

given its high activity for a range of photocatalytic process; including water splitting) [41]. 

The physical properties and water splitting activities of our TiO2 photoelectrodes, after being 

annealed in air, is shown in Table 1. 

 

Table 1: Summary of the physical properties and water splitting performance of our TiO2 

photoelectrodes, after being annealed in air.  

Sample 

(number of 

pulses) 

Surface area 

per geometric 

25 µm2 (µm2) 

RMS 

roughness 

(nm) 

Film 

thickness 

(µm) 

Photocurrent 

(mA.cm-2) – 

365 nm light 

(~44 mW.cm-2)* 

 

IPCE at 350 

nm (%)* 

 

19 36.0 42.3 0.1 1.4 32 

92 32.6 97.1 0.6 4.6 85 

182 41.1 123 2.6 3.5 39 

460 56.3 257 11.0 3.9 40 

*when held at 1.23 VRHE and irradiated from the front (semiconductor-electrolyte interface). 

 

 We will now turn our attention to the role of carbon in relation to the water splitting 

activity of our TiO2 photoelectrodes. As-deposited samples, grown from 92 – 460 deposition 

pulses, possessed high levels of carbon (typically between 3 – 7 at.%). Carbon has a work 

function of ~4.8 eV [42], and would thus possess a Fermi level of ~0.3 VRHE. As the 

conduction band potentials of anatase and rutile are more negative than this Fermi level [41]. 

there is a thermodynamic driving force for photo-generated electrons to move into carbon 

sites. Our XPS and TEM analyses indicated carbon grew mostly in sheets, located between 



dendritic anatase crystals. As such, there is likely no consistent or inter-connected carbon 

structure that runs through the TiO2 structure. This means that photo-generated electrons, 

which move into carbon sites, are likely trapped within these isolated carbon sheets; 

increasing the likelihood of electron-hole recombination (Figure 7a). This was evidenced in 

our current-voltage curves, where dark current capacitance was observed; increasingly so in 

thicker films. Moreover, thicker films showed lower photocatalytic activities under front 

irradiation than thinner films (Figure 5b), in addition to a slower rise in photocurrent when 

the light was turned on, which we attribute to slower electron extraction kinetics due to the 

inhibiting role of carbon. However, after annealing the samples in air at 500 °C, carbon was 

oxidised and removed, resulting in substantially higher water splitting activity (Figure 5 and 

Figure 6). Although carbon inhibits water splitting in our TiO2 photoelectrodes, our physical 

characterisations indicate carbon templates the growth of dendritic TiO2 nanostructures; 

essential for enhancing the water splitting activity of TiO2-based photoelectrodes [43, 44]. 

This, coupled with the fact that carbon can be easily removed by annealing, shows that it may 

serve as a tool for creating nanostructured water splitting devices.  
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Figure 7: (a) A cartoon that describes how sheets of carbon form between TiO2 crystals, and 

how the material functions in photocatalytically splitting water under a positive applied 

potential and ultra-bandgap light. (b) The theoretical solar photocurrent determined for the 92 

pulse sample under front irradiation. 

 

 Theoretical solar photocurrent (TSP) was determined by multiplying IPCE spectra 

with the AM 1.5 solar spectrum (Equation 4).  Our most active sample under front irradiation 

(92 pulses) showed a TSP of ~1.2 mA.cm-2 at 1.23 VRHE under 1 sun irradiance (Figure 7b), 

and is compared with TiO2-based photoelectrodes from the literature (Table 2). Wijayantha 

et. al. grew cauliflower-structured anatase TiO2 photoelectrodes using an aerosol-assisted 

CVD route [45]. These photoelectrodes showed photocurrents of ~0.2 mA.cm-2 at 1.23 VRHE 

under 1 sun irradiance (100 mW.cm-2, Xe lamp). Zheng et al., using hydrothermal methods, 

grew hierarchically branched single crystal rutile nanorods [35]. These photoelectrodes 

showed light conversion efficiencies near 70 % at 380 nm and photocurrents of ~0.83 mA.cm-

2 at 0.8 VRHE under near 1 sun irradiance (88 mW.cm-2, Xe lamp). Gu et. al. grew 

nanostructured TiO2 photoelectrodes using a two-step hydrothermal method, in which highly 

oriented rutile nanorods were grown and decorated with anatase branches [44]. These 

photoelectrodes showed light conversion efficiencies above 60 % in the UV region, and 

photocurrents of ~1.0 mA.cm-2 at 0.8 VRHE under 1 sun irradiance (100 mW.cm-2, Xe lamp). 

Comparing the literature, the photoelectrodes synthesised herein using CVD show similar 

water splitting activities to some of the leading TiO2-based materials. Given CVD is an 

economically viable and upscalable process, which is currently used to grow self-cleaning 

TiO2 coatings on mass scale (e.g. Pilkington NSG Activ), this article should serve as a model 

example for upscalably growing nanostructured photoelectrodes made from visible-light 

active materials that can harness a greater portion of sunlight. 



 

Table 2: Summary of the phases, structures, synthesis routes and water splitting performances 

of example TiO2-based photoelectrodes in the literature, as compared with our best 

performing material (the 92 pulse sample, post annealing in air). 

Synthetic route Phase Architecture 
IPCE at 350 

nm (%)* 

Photocurrent 

(mA.cm-2) at 1 

sun irradiance* 

reference 

 

PP-MOCVD anatase: rutile dendritic 85 ~1.2 herein 

Aerosol-

assisted CVD 
anatase 

cauliflower-

structured 
n/a ~0.2 [45] 

Hydrothermal rutile 
branched 

nanorods 
~32 ~0.85 [35] 

Hydrothermal anatase: rutile 
rutile nanorods; 

anatase branches 
~57 ~1.1 [44] 

*when held at 1.23 VRHE and irradiated from the front (semiconductor-electrolyte interface). 

CONCLUSIONS 

The photoelectrochemical water oxidation performance of nanostructured anatase, and 

anatase-rutile TiO2 photoelectrodes was investigated; as well as the role of co-deposited 

carbon. Highly nanostructured architectures were produced by an upscalable CVD route (PP-

MOCVD), where the deposition parameters could be varied to fine-tune several material 

properties such as: (i) film thickness, (ii) the anatase-rutile phase fraction, and (iii) 

topography.  

 Photoelectrodes that contained both the anatase and rutile phases showed synergistic 

enhancements in activity, compared with anatase alone, with incident photon-to-current 

efficiencies above 80 % in the UV region, and photocurrents of ~1.2 mA.cm-2 at 1.23 VRHE. 

We propose that co-deposited carbon might play a role in templating the growth of dendritic 

nanostructures. Although carbon inhibited water splitting in this system, it could be removed 

by a post-deposition annealing process, resulting in highly active and nanostructured 

photoelectrodes. We believe that this article should serve as a model example for the 



upscalable growth of highly active nanostructured photoelectrodes, where similar design 

principles should be applied to more visible-light materials to realise enhanced solar activity. 
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Figure S1: (a) XPS of the surface Ti 2p binding energy environment in the as-deposited TiO2 

sample made from 184 pulses and (b) XRD patterns of the as-deposited TiO2 samples (19 – 

460 pulses), alongside anatase, rutile and FTO powder standards. Miller indices correspond to 

anatase (non-asterisked) and rutile (asterisked) phases. 
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Figure S2: XPS annealing study goes here 

 

As all samples showed some degree of preferred growth, a refined scale factor was estimated 

by taking the sum total counts of each modelled phase, allowing us to estimate phase fraction: 

𝑎𝑛𝑎𝑡𝑎𝑠𝑒 (𝑤𝑡. %) = [
𝑆𝑎𝜌𝑎𝑉𝑟

2

𝑆𝑎𝜌𝑎𝑉𝑟
2 + 𝑆𝑟𝜌𝑟𝑉𝑟

2
] × 100 

(Equation S1) 

where S is the refined scale factor, ρ is the density, V is the unit cell volume and subscript 

labels a and r refer to the anatase and rutile phases respectively.  

 

Table S1: Summary of the anatase: rutile (%) phase fraction in of our TiO2 photoelectrodes, 

determined using XRD for samples both before and after annealing in air.  

Sample  

(number of pulses) 

Before annealing After annealing 

anatase: rutile (%) anatase: rutile (%) 

19 100: 0 100: 0 

92 94: 6 98: 2 

138 97: 3 95: 5 

182 95: 5 94: 6 

460 n/a* 91: 9 

*Material was too amorphous to determined phase fraction 

 



 

Figure S3: XRD of the 184 pulse sample, after being annealed, measured at various glancing 

incidence angles (0.2 – 1.4°) over the range 24° < 2θ < 28°. Peaks were observed at 25.5, 26.5 

and 27.5° and corresponded to anatase (101), FTO (110) and rutile (110) respectively.  

 

 

 

Figure S4: Tauc plot of the (absorption coefficient x Planck’s constant x frequency)1/2 vs the 

light energy (eV) for the 19 and 92 pulse samples after being annealed in air, revealing 

bandgap energies of ~3.1 and 2.9 eV respectively. 

 

 

 



 

Figure S5: SEM micrographs of the 92 pulse TiO2 sample (a) as-deposited and (b) after being 

annealed in air. 

 

 

 

 

 



 

Figure S6: Surface topography, measured by AFM, for all samples after being annealed in 

air.  

 

 

 

 

 

 

Figure S7: Surface topography, measured by AFM, for the 92 pulse sample before and after 

being annealed in air. 

 

 



 

  

Figure S8: Current-voltage curves for a series of TiO2 samples measured under back 

irradiation (a) before and (b) after being annealed in air. Samples were measured in 1 M 

NaOH (pH = 13.6), the current was swept from 0.0 to 2.0 VRHE at a scan rate of 40 mV.s-1 and 

a 365 nm LED (~44 mW.cm-2) was turned on and off roughly every second. Dotted grey lines 

represent the zero-line of current flow for each sample (i.e. 0 mA.cm-2). 

 

  

Figure S9: IPCE measured at a constant applied potential of 1.23 VRHE in 1 M NaOH (pH = 

13.6) for a series of TiO2 samples under back irradiation (a) before and (b) after annealing. 

 

 



 

Figure S10: 1 hr stability test, holding the sample made from 92 deposition pulses at 1.23 

VRHE and measuring the photocurrent under chopped irradiation, when irradiating the sample 

from the back with a 365 nm LED (~44 mW.cm-2): (a) the performance over the first 15 

minutes and (b) last 15 minutes of the test. 

 

 


